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The free-boundary problem for the die-swell of a viscous fluid
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Abstract. When a viscous fluid is extruded from a capillary or an annular die, the thickness of the fluid jet is in
general unequal to the width of the die. This phenomenon is called “die-swell” and is studied in this paper for a die
made up of two parallel plates. It is assumed that no slip will occur between the fluid and the plates, and that the
pressure in the space into which the fluid is emitted is constant and uniform. The fluid surface is a free streamline.
Its shape is calculated with the use of complex-function theory and conformal-mapping techniques. The predicted
ratio of swell is found to be in full agreement with known finite-element results.

1. Introduction

For the manufacture of threads and sacks of a thermoplastic material the extrusion process is
used. The plastic is melted and extruded from a capillary or an annular die. This fluid is
emitted into a gas (e.g. the atmosphere) or another fluid. In that area the product attains its
final shape. The intersection of the product will be distinct from the size of the opening of
the die or capillary. This difference is known as die-swell; the magnitude of the relative
thickness of the product is called the swell-ratio.

In this paper we consider the extrusion of an incompressible Newtonian fluid from a die
formed by two parallel plates. This die geometry is an example of a long and narrow
strip-like capillary. It also provides a model for an annular die where the flow takes place in
the narrow gap between two concentric tubes with large radii. A Newtonian fluid is a linear,
homogeneous, isotropic fluid, for which there exists a linear relation between the stress
tensor and the strain rate. This type of fluid gives a reasonable indication of the behaviour of
visco-elastic fluids, for which the dependence of the stresses on the strain rate is more
complicated. The fluid flow is governed by the incompressibility condition, the equations of
motion, and the constitutive equations. We restrict ourselves to the isothermal problem,
because the influences of the temperature are dominated by the viscous effects. The pressure
of the environment, into which the fluid is emitted, is assumed to be constant and uniform.
The effects of surface tension are neglected. Further, we assume complete adherence
between the fluid and the plates. The velocity field far upstream in the die is the fully
developed Poiseuille flow. The surface of the fluid outside the die has an unknown shape.
Therefore, the flow problem is a free-boundary problem. Since this boundary must be a free
streamline, we have an extra condition to determine the shape of the fluid surface and also
the swell-ratio.

For the solution of this free-boundary problem we employ the complex-function theory
and the conformal-mapping technique which have successfully been applied to several
problems in linear elasticity, see Muskhelishvili [5], England [4]. An application of this
theory to viscous fluid flow in injection moulding is given by van Vroonhoven and Kuijpers
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[8]. All equations are satisfied by the introduction of two independent analytic functions
which are completely determined by the boundary conditions. The free boundary is
represented by a conformal mapping which is calculated from the free-streamline condition.
In the final section the results are shown and compared to various finite-element simulations
listed by Tanner [7].

2. Formulation of the problem

An incompressible Newtonian fluid flows out of a die into an open space where the
environmental pressure is constant. The die is a capillary made up of two parallel plates at
distance 2a. The problem is described in the dimensionless Cartesian coordinates x and y,
which are related to the usual Cartesian coordinates by X = ax and Y =ay. Let B" and B~
be the separation points of the fluid from the die. The x-coordinate in these points is chosen
to be zero. The plane y = 0 corresponds to the plane of symmetry. The y-coordinates of the
planes A*B* and A"B ™ are equal to +1 and —1 respectively (see Fig. 2.1). The shape of the
free boundaries B'C" and B"C™ is to be determined, especially the swell-ratio £ which
equals the distance from C* (or C™) to the plane of symmetry divided by a. Far to the left
we have the fully developed Poiseuille flow with average velocity V,. The dimensionless
velocity of the fluid is obtained by division by V, and is denoted by

v=u(x, y)e, + v(x, y)e, . 2.1)

The stress tensor in the point (x, y) is denoted by T. The dimensionless stress tensor 7 with

components ¢, ¢, (=t,), t,, is defined by the relation
29V,
T= 170 T,
a

where 7 is the viscosity of the fluid.

C+
ALY -
y h
< T~
A~ B~
-

Fig. 2.1. The die geometry.
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For an incompressible Newtonian fluid we have the following equations:
(i) the incompressibility condition
divv=0, (2.2)

(ii) the constitutive relation

T=-plt+d, (2.3)
where p is the dimensionless hydrostatic pressure and d is the rate of deformation
tensor,

d—l(L+LT) =% (2.4)

T2 ’ T oax )
(iii) the conservation of momentum
divr’=0, (2.5)

when body forces are absent and the accelerations can be neglected.

As shown in [4, Sec. 2.5], [5, Ch. 5], [8] the equations (2.2) to (2.5) are satisfied by the
introduction of the complex variables z = x + iy and Z = x — iy and of two complex functions
Q(z) and w(z) which are analytic in the domain G, occupied by the fluid. The general
solution of the flow problem is then given by

w=u+iv=z20'(2) + 0'(z) - Q>2),
e +t,=-2[Q)+Q'()], (2.6)

t,—t, +2it,, =2[zQ0(2) + 0"(2)] .

xx

Furthermore, the resulting force over an arc PQ can be expressed as
Q — —
K=-[ (. +it)dz= 0 + @@ + 08, @)

where ¢, and ¢, are the normal and shear stresses along the arc PQ, see [4, Sec. 2.7], [5, Sec.
33], [8]. The prime ' indicates differentiation with respect to the complex argument.

The functions {}(z) and w(z) are completely determined by the boundary conditions. We
need two conditions along every part of the boundary. Along the free surface one extra
condition is required, because its shape is unknown.

Complete adherence between the fluid and the planes A"B* and A"B™ is assumed. This
means v =0 there, and thus

u=0, v=0, y==*1, x<0. (2.8)

The environmental pressure has a constant (dimensionless) value p,. Consequently, the



170 J.C.W. van Vroonhoven, A.J.M. Sipers and W.J.J. Kuijpers

normal stress ¢, and the shear stress ¢, along the free boundaries B*C" and B"C~ must
satisfy

t,=—py, t=0. 2.9)

n s

Substitution of (2.9) into (2.7) yields

K=z20'(2)+ 0'(2)+ Qz)=pyz+p,, zEB'C'UBC, (2.10)

where p, € C is an integration constant.
The extra condition along the free boundaries B*C" and B”C~ follows from the fact that
it is a streamline, which means that the normal velocity must vanish,

(v,m)=0, (2.11)

where n denotes the outer normal.
For a complete determination of the mathematical problem conditions at infinity (x — %)
are required. Since the environmental pressure in the open space is constant, we impose that

T=—pl, (x—>x). (2.12)
From this condition it can be derived that there exists a uniform flow at infinity,

v=hTle,, (x>, (2.13)

X

where h is the swell-ratio.
In the die the flow will resemble the fully developed Poiseuille flow, which will be denoted
by an index 0. Therefore, the limiting value of the velocity must be

u—=uy=3(1-y"), vov,=0, (x—>-). (2.14)
Analogous to [8] the Poiseuille flow is subtracted. We write
u=u,+u, v=vy,+v,, and w,=u,+iv,. (2.15)

The velocities u, and v, are given by (2.14), while u, and v, are the new unknown functions.
We replace (z) and w(z) by Q,(2) + Q,(2) resp. w,(2) + ©,(z) with

Qo(2)=—3(1+32°)+ip,z, wy(2) =123+ 1427, (2.16)

representing the Poiseuille flow and with (,(z) and w,(z) the new unknown functions. The
constant p, € R represents a uniform pressure and is still free to be chosen.

The boundary conditions (2.8), (2.10), and (2.14) transform into

w;=z0(2) + 0i(2) - Q,(2) =0, y==x1,x<0,

wy=zQi(2) + 0{(2) ~2y(2) >0, (x—>—), (2.17)
z0(2) + w(2) + Q,(2)
3 +222 -2+ (py—p.)z+p,, zEB'C'UBC ™.

K,
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Choosing p, = p, and omitting the irrelevant constant p,, we have
K, =3(z"+222-7%), z€B'C'UBC. (2.18)

The equations (2.17) and (2.18) show great resemblance with the formulation of the
free-boundary problem in injection moulding as stated in [8]. Therefore, the procedure for
the solution of the die-swell problem will be completely analogous. There are only two
differences between these free-boundary problems. Firstly, the die-swell geometry stretches
out to infinity at two sides. Secondly, the subtracted Poiseuille flow slightly differs because of
the use of a moving frame of reference in [8].

3. The conformal mapping

The problem stated above will be treated with conformal-mapping techniques as has been
done in [8). The domain G, occupied by the fluid is transformed into the interior of the unit
circle, G; :={{ €C||{| <1} (see Figs 3.1 and 3.2).

The mapping function is denoted by

z=m({). (3.1)

Since this transformation is conformal, the function m({) is analytic and univalent for
lE G:,'. Further, the mapping function is assumed to be continuous on G;’ , except in the
points A, { = —1, and C, { = +1, where logarithmic singularities occur.

As a result from the Riemann mapping theorem the conformal mapping function exists
and is uniquely determined by the choice of the points A(=A", A™), B® and C(=C*,C") on
the unit circle. The following relation for the normal vector n=n.e, + n e, along the
boundary of G, can be derived, see [8],

C+
A+ B/
G,
A~ B~ \
c-

Fig. 3.1. The domain G,.
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Fig. 3.2. The {-plane.

n+in, _ gm(£)
nx—iny §m’+(§) ’

(3.2)

where m’”(¢) denotes the limiting value of the derivative m’({) for { € GZ tending to a
point ¢ on the unit circle, || =1, £ # =1.

We follow the conformal-mapping technique and the method of analytic continuation to
the exterior of the unit circle G; := {{ €C||{|>1}, as applied to certain problems in the
theory of linear elasticity [4, Ch. 5], [5, Ch. 15, 21] and to a free-boundary problem in
viscous flow theory [8]. The conformal mapping function m(¢) is approximated by a
polynomial m,(¢) of degree N,

m,({) = EO wel* (3.3)

For reasons of symmetry the coefficients p,, 0< k< N, are real but yet unknown.

The points { = +1 are mapped onto infinity in the complex z-plane by the exact mapping
function z = m(¢), whereas the polynomial m,({) remains finite in these points. From this
we conclude that the polynomial m,(¢) can only produce a good approximation of m({)
near the separation points B* and B~, while the approximation will not suffice near the
points A, { = —1, and C, ¢ = +1. This assertion can be formalized by the introduction of the
points P*, {=¢', and P7, {=e™"*, 0<a < im, on the unit circle, having the following
properties. Firstly, the points P* and P~ are mapped onto two points of the free boundaries
B"C" and B"C~ by the exact conformal mapping function z = m(¢). Therefore, we assume
that a reliable approximation of the free boundary is given by the image of the arcs B*P*
and B P~ under the polynomial mapping function z =m,(¢), i.e. by

N
z=mN(ei9)=I§0 pee, a<l|o|sim. (3.4)

Secondly, the image of the arc P"CP" ({=e”, —a<6<a) under the approximate
mapping z = my(¢) is a bounded curve in the complex z-plane (see Fig. 3.3). This curve will
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A+ B/

P+ C+

A~ B:\
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Fig. 3.3. The domain G, under m({).

not correspond to the parts P'C* and P"C~ of the exact free boundary. In order to obtain
the complete shape of the fluid surface, we can add two straight horizontal lines from P* and
P~ to the right as shown in Fig. 3.3.

In the approximation theory the angle a, 0 < a < 3, is determined by the condition that
the y-coordinate along the boundary CP*B™ attains its maximum in the point P*; so

ﬂ_ [_di]__ . _ia ’ la _ 1
da—Im P =Im[i e“m(e")]=0, O<a<sm. (3.5)

The swell-ratio A is then calculated as the maximum value of the y-coordinate,
h =Im[m,(e"“)] . (3.6)

Finally, we remark that the polynomial mapping z = m,(¢) must be conformal, i.e. analytic
and univalent for { € G;. Since my({) is an analytic function for all { €C, only the
univalence has to be shown. This property is equivalent to the statement that the derivative
m,( {) doesn’t vanish. This condition will be verified in the final section after the determina-
tion of the coefficients g,, 0< k<N.

4. Solution of the problem

We follow the procedure of solution as employed in [8]. Approximating the exact mapping
function z=m({) by a polynomial m,(¢), we replace the functions €,(z) and o,(z) by
Q. () resp. wy(¢). These two functions are analytic for { € GZ, but will not be polyno-
mials in general. The boundary conditions as formulated in section 2 must be transformed
properly to the unit circle, |£| = 1. From a combination of (2.17) (i) and (ii) we find

_mpy()Q(§) + @y "(§)
my"(€)

05(£)=0, £€B*AB. (4.1)

1
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The arcs B'P* and B P~ correspond to a part of the fluid surface; so boundary condition
(2.9) holds along these arcs. The arc P"CP" does not correspond to the free boundary which
stretches out to infinity. Since this arc is situated far from the die opening, we impose
condition (2.12) there. Consequently, condition (2.9) also holds on P~ CP". Because of the
continuity of the normal and shear stresses along the arcs B"P~, P"CP", and B'P" of the
unit circle, boundary conditions (2.12) and (2.18) transform into

_ my (O () + 0k (§)

= +05(£)=gn(£), €EBCBT, (4.2)
my, " (§)

K,

with g, (£) defined by

gn(€) 1= 3([my ()] +2my(£)my(€) — [my(£)])?), £€EBCB™. (4.3)

The problem stated above can be solved by an analytic continuation of Q,({) to the exterior
of the unit circle G ;. This continuation is denoted by ¥,({) and is defined by

QN(Z) ’ { € GZ 3
V()= my(DOUUD 011D - (4.4)
m(1/7) ’ ¢

The function ¥, (¢) is analytic for { € G Z U G and must satisfy the holomorphy condition,
see [4, Sec. 5.4], [8],

@ (£) =m{(V(1/) —my (1YL =01), (§—0). (4.5)
By definition (4.4) the boundary conditions (4.1) and (4.2) become

Vy(€) - Py(€) =0, §EBTAB, (4.6)

V(£ +¥L(€)=¢gn(€), EEBTCB". (4.7)
Near the separation points B* and B~ the velocity must remain finite. Therefore, we have

Vy(0)=0(1), (§—>=i). (4.8)
The condition (4.6) implies that the function ¥, (¢) is analytic for { € C\B"CB". The jump
condition (4.7) over the arc B"CB" and the condition (4.8) near the endpoints B~ and B”
determine a so-called Hilbertproblem for the function ¥, (¢). For a detailed description of
the theory for the solution of Hilbert problems we refer to Muskhelishvili [5, Ch. 18] and

England [4, Ch. 1]. The solution of this Hilbert problem is derived in [8] and can be
represented by

Yu(8)=X(L)Gy({) + X({F(¢), (ECBTCBT, (4.9)

where G () is defined by
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1 gn(§) - n
=— — €CB CB" .

Gn(€) = 57— |- cpe X (E)E-0) d¢, (€CB C (4.10)
Evaluating the integral (4.10) by means of contour integration, we can express the function
G,(¢) in the coefficients u,, 0 < k < N, of the conformal mapping. The function X(¢{) is the
characteristic Plemelj function defined by

X() = - ¢+, {€CBCB", (4.11)

and has a branch cut along the arc B"CB™. The function F({) is a polynomial of degree
N-1,

FN(§)=§0 fil", t(ec. (4.12)

The coefficients of this function are determined by the holomorphy condition (4.5). This
condition yields N linear equations for the unknown coefficients f,, 0 < k < N — 1. Solving
these equations we find an explicit formula for the function ¥,(¢) in terms of the
coefficients w,, 0 < k < N, from the relations (4.9) and (4.10).

In order to determine the coefficients u,, 0< k < N, of the conformal mapping function
m,({) and thereby the shape of the fluid surface, we need N + 1 algebraic equations. Since
the point { = i corresponds to the separation point B", z =i, we have

my(i)=1i. (4.13)

The point { = —i, is then mapped onto B™, z = —i. Two equations are supplied by the real
and imaginary parts of (4.13), so N — 1 more equations are required. The boundary B*P™
forms a free streamline, whose shape is determined by condition (2.11). Therefore, we
demand that the normal velocity vanishes in N —1 points of the boundary B*P". This
condition is then also satisfied on the arc B"P~ as a consequence of the symmetry of the
problem. We choose the following points

1 k
£ i=e%, 0k:=a+<§7r—a>ﬁ, 1sksN-1, (4.14)

where « is the angle introduced in Section 3.
The free-streamline condition (2.11) is transformed to the {-plane with relation (3.2). The
coefficients w,, 0< k< N, are now determined by (4.13) and by the conditions

Re[wy&m, " (£)]=0, 1<k<N-1, (4.15)

where w,, is the complex velocity

wy =1+ 3O — 2my(£)my () + [my(HF) + Yr(£) - Va(8). (4.16)

These equations are solved by a numerical procedure for the solution of systems of
non-linear equations. An approximation of the shape of the free boundary B"P*(B™P ) is
then given by the relation (3.4). The results are presented in the final section.
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5. Results and conclusions

In this section we present the results of the polynomial approximation of the conformal
mapping function. The coefficients u,, 0=< k < N, of the function m,({) and the angle «
defined by equation (3.5) are calculated for N=6, 7, and 8 and are listed in Table 5.1.
Estimates of the errors in the values of the coefficients u, are in the order of 107° if N=6,
and in the order of 10~* if N =7 or 8. This means that the error in u, is 0.1% or less. Taking
N =5, we did not obtain any trustworthy outcome, because the degree of approximation was
apparently too low. On the other hand, no improvement was observed in the case N =9 or
10. So we conclude that the approximations for N =6, 7, 8 produce reliable results with
rather little calculus.

The mapping function z =m,(¢) has to be conformal, see Section 3. Therefore, it must
be examined, if zeroes of the derivative m,{ {) occur in the domain Gz . The total number of
zeroes of my(¢) inside the unit circle I' is given by the integral

1 [ my({)

17 2w rm,(,({)dg' (5.1)

Calculation of the integral I, yields that there is one single zero in G for N=6,7 as well as
N = 8. The position of the zero { = {, is given by the integral

_ 1 [ dmx({)
2= 201 b mig) 9 (5.2)

We find ¢, = —0.04, £, = +0.03, {, = +0.02 for N =6, 7, 8 respectively. These points are all
situated near the origin £ =0 and so they are mapped onto points in the neighbourhood of
z=m,(0) = u, in the domain G,. Since the points z = u, have great distance to the
separation points B and B~, we conclude that the mapping function z =m({) is conformal
near the arcs B'P" and B'P".

The shape of the free boundaries B'P* and B™P~ is calculated with relation (3.4) and is
shown in Fig. 5.1. The difference between the approximations of the free boundary is about
3-4%. The approximation h for the swell-ratio follows from equation (3.6). Another
estimate H for the swell-ratio is based on the property (2.13) that the velocity at infinity is

Table 5.1. The coefficients u, and the angle « for several values of N

k N=6 N=7 N=8

0 1.0088 1.2603 1.1586
1 0.1509 —0.1395 —0.0760
2 1.7929 2.2748 2.2280
3 —1.1489 —1.6110 —1.6411
4 0.8997 1.2085 1.3723
5 —0.2998 —0.5032 —0.6470
6 0.1157 0.1941 0.3261
7 —0.0307 —0.0812
8 0.0234
alm 0.2514 0.2761 0.2540
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Fig. 5.1. The free boundary.

uniform. This estimate H is then defined as the reciprocal value of the velocity in the point
C, { = +1. The values of h and H are listed in Table 5.2.

The results are compared with swell-ratios tabulated by Tanner [7, sec. 8.3], who gives
finite-element simulations obtained by the following authors. Crochet and Keunings found a
swell-ratio of 1.188 in [2] and several values between 1.196 and 1.227 in [3]. Chang, Patten
and Finlayson [1] calculated a swell-ratio of 1.206, while Reddy and Tanner [6] obtained
1.199. So we conclude, that the exact swell-ratio for an incompressible Newtonian fluid will
be 1.20 with an error of 2% at most. This is in full agreement with the numerical results
which lie in the same range.

Table 5.2. Estimates for the
swell-ratio

N h H

6 1.1835 1.1982
7 1.2245 1.2247
8 1.2026 1.2027
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